Statistical Power to Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples
نویسندگان
چکیده
We have recently developed analysis methods (GREML) to estimate the genetic variance of a complex trait/disease and the genetic correlation between two complex traits/diseases using genome-wide single nucleotide polymorphism (SNP) data in unrelated individuals. Here we use analytical derivations and simulations to quantify the sampling variance of the estimate of the proportion of phenotypic variance captured by all SNPs for quantitative traits and case-control studies. We also derive the approximate sampling variance of the estimate of a genetic correlation in a bivariate analysis, when two complex traits are either measured on the same or different individuals. We show that the sampling variance is inversely proportional to the number of pairwise contrasts in the analysis and to the variance in SNP-derived genetic relationships. For bivariate analysis, the sampling variance of the genetic correlation additionally depends on the harmonic mean of the proportion of variance explained by the SNPs for the two traits and the genetic correlation between the traits, and depends on the phenotypic correlation when the traits are measured on the same individuals. We provide an online tool for calculating the power of detecting genetic (co)variation using genome-wide SNP data. The new theory and online tool will be helpful to plan experimental designs to estimate the missing heritability that has not yet been fully revealed through genome-wide association studies, and to estimate the genetic overlap between complex traits (diseases) in particular when the traits (diseases) are not measured on the same samples.
منابع مشابه
Identification of QTLs for grain yield and some agro-morphological traits in sunflower (Helianthus annuus L.) using SSR and SNP markers
Many agriculturally important traits are complex, affected by many genes and the environment. Quantitative trait loci (QTL) mapping is a key tool for studying the genetic structure of complex traits in plants. In the present study QTLs associated with yield and agronomical traits such as leaf number, leaf length, leaf width, plant height, stem and head diameter were identified by using 70 recom...
متن کاملSimultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model
Gene discovery, estimation of heritability captured by SNP arrays, inference on genetic architecture and prediction analyses of complex traits are usually performed using different statistical models and methods, leading to inefficiency and loss of power. Here we use a Bayesian mixture model that simultaneously allows variant discovery, estimation of genetic variance explained by all variants a...
متن کاملThe power of regional heritability analysis for rare and common variant detection: simulations and application to eye biometrical traits
Genome-wide association studies (GWAS) have provided valuable insights into the genetic basis of complex traits. However, they have explained relatively little trait heritability. Recently, we proposed a new analytical approach called regional heritability mapping (RHM) that captures more of the missing genetic variation. This method is applicable both to related and unrelated populations. Here...
متن کاملBayesian Inference of (Co) Variance Components and Genetic Parameters for Economic Traits in Iranian Holsteins via Gibbs Sampling
The aim of this study was using Bayesian approach via Gibbs sampling (GS) for estimating genetic parameters of production, reproduction and health traits in Iranian Holstein cows. Data consisted of 320666 first- lactation records of Holstein cows from 7696 sires and 260302 dams collected by the animal breeding center of Iran from year 1991 to 2010. (Co) variance components were estimated using ...
متن کاملCalibrating the Performance of SNP Arrays for Whole-Genome Association Studies
To facilitate whole-genome association studies (WGAS), several high-density SNP genotyping arrays have been developed. Genetic coverage and statistical power are the primary benchmark metrics in evaluating the performance of SNP arrays. Ideally, such evaluations would be done on a SNP set and a cohort of individuals that are both independently sampled from the original SNPs and individuals used...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014